

# **Biology Lab Series 2 – Alignment**

# **Anatomy**

# **Performance Expectations**

HS-LS1-2: Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.

## **Science and Engineering Practices**

Developing and using models Planning and carrying out investigations Analyzing and interpreting data

#### **Crosscutting Concepts**

Systems and system models Stability and Change of Systems

# **Plant Growth and Development**

## **Performance Expectations**

HS-LS3-3: Apply concepts of statistics and probability to explain the distribution of expressed traits in a population.

## **Science and Engineering Practices**

Analyzing and interpreting data
Using mathematics and computational thinking
Obtaining, evaluating, and communicating information

### **Crosscutting Concepts**

Scale, Proportion, and Quantity

# **Photosynthesis**

## **Performance Expectations**

HS-LS1-5: Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.

### **Science and Engineering Practices**

Asking questions and defining problems
Analyzing and interpreting data
Using mathematics and computational thinking

#### **Crosscutting Concepts**

**Energy and Matter in Systems** 





# Rate of Transpiration

## **Performance Expectations**

HS-LS1-3: Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis.

#### **Science and Engineering Practices**

Analyzing and interpreting data
Using mathematics and computational thinking
Engaging in argument from evidence

#### **Crosscutting concepts**

Stability and Change of Systems

#### **Fermentation**

# **Performance Expectations**

HS-LS1-3: Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis.

## Science and Engineering Practices

Analyzing and interpreting data
Using mathematics and computational thinking
Engaging in argument from evidence

#### **Crosscutting concepts**

Stability and Change of Systems

# **Taxonomy and Classification**

#### **Performance Expectations**

HS-LS2-6: Evaluate claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions but changing conditions may result in a new ecosystem.

#### **Science and Engineering Practices**

Analyzing and interpreting data
Using mathematics and computational thinking
Engaging in Argument from Evidence
Constructing Explanations

#### **Crosscutting Concepts**

Cause and Effects
Patterns
Stability and Change





# **Evolution by Natural Selection**

#### **Performance Expectations**

HS-LS3-3: Apply concepts of statistics and probability to explain the distribution of expressed traits in a population.

## **Science and Engineering Practices**

Analyzing and interpreting data
Using mathematics and computational thinking
Obtaining, evaluating, and communicating information

#### **Crosscutting Concepts**

Scale, Proportion, and Quantity

## **Artificial Selection**

#### **Performance Expectations**

HS-LS3-3: Apply concepts of statistics and probability to explain the distribution of expressed traits in a population.

#### Science and Engineering Practices

Analyzing and interpreting data
Using mathematics and computational thinking
Obtaining, evaluating, and communicating information

#### **Crosscutting Concepts**

Scale, Proportion, and Quantity

#### **Taxis**

#### **Performance Expectations**

HS-LS1-3: Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis.

#### **Science and Engineering Practices**

Analyzing and interpreting data
Using mathematics and computational thinking
Engaging in argument from evidence

### **Crosscutting concepts**

Stability and Change of Systems





# **Ecosystems**

# **Performance Expectations**

HS-LS2-6: Evaluate claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions but changing conditions may result in a new ecosystem.

# **Science and Engineering Practices**

Analyzing and interpreting data
Using mathematics and computational thinking
Engaging in Argument from Evidence
Constructing Explanations

## **Crosscutting Concepts**

Cause and Effects
Patterns
Stability and Change

